[Solved] Scraped CSV pandas dataframe I get: ValueError(‘Length of values does not match length of ‘ ‘index’)

[ad_1] You need merge with inner join: print(‘####CURRIES###’) df1 = pd.read_csv(‘C:\\O\\df1.csv’, index_col=False, usecols=[0,1,2], names=[“EW”, “WE”, “DA”], header=None) print(df1.head()) ####CURRIES### EW WE \ 0 can v can 1.90 1 Lanus U20 v Argentinos Jrs U20 2.10 2 Botafogo RJ U20 v Toluca U20 1.83 3 Atletico Mineiro U20 v Bahia U20 2.10 4 FC Porto v … Read more

[Solved] How do I make a function in python which takes a list of integers as an input and outputs smaller lists with only two values?

[ad_1] If you only want groups of two (as opposed to groups of n), then you can hardcode n=2 and use a list comprehension to return a list of lists. This will also create a group of one at the end of the list if the length of the list is odd: some_list = [‘a’,’b’,’c’,’d’,’e’] … Read more

[Solved] How to store missing date(15 min interval) points from csv into new file (15 minutes interval) -python 3.5

[ad_1] try this: In [16]: df.ix[df.groupby(df[‘datetime’].dt.date)[‘production’].transform(‘nunique’) < 44 * 4 * 24, ‘datetime’].dt.date.unique() Out[16]: array([datetime.date(2015, 12, 7)], dtype=object) this will give you all rows for the “problematic” days: df[df.groupby(df[‘datetime’].dt.date)[‘production’].transform(‘nunique’) < 44 * 4 * 24] PS there is a good reason why people asked you for a good reproducible sample data sets – with the … Read more

[Solved] find number of 1 and 0 combinations in two columns

[ad_1] Assuming you have a pandas dataframe, one option is to use pandas.crosstab to return another dataframe: import pandas as pd df = pd.read_csv(‘file.csv’) res = pd.crosstab(df[‘X’], df[‘Y’]) print(res) Y 0 1 X 0 3 7 1 1 3 A collections.Counter solution is also possible if a dictionary result is required: res = Counter(zip(df[‘X’].values, df[‘Y’].values)) … Read more

[Solved] Matplotlib graph adjusment with big dataset [closed]

[ad_1] Given this dataframe: df.head() complete mid_c mid_h mid_l mid_o time 0 True 0.80936 0.80943 0.80936 0.80943 2018-01-31 09:54:10+00:00 1 True 0.80942 0.80942 0.80937 0.80937 2018-01-31 09:54:20+00:00 2 True 0.80946 0.80946 0.80946 0.80946 2018-01-31 09:54:25+00:00 3 True 0.80942 0.80942 0.80940 0.80940 2018-01-31 09:54:30+00:00 4 True 0.80944 0.80944 0.80944 0.80944 2018-01-31 09:54:35+00:00 Create a 50 moving … Read more

[Solved] Calculate Year on Year, Quarter on Quarter, Month on month number of Repeated, new, lost customers & theri revenue using pandas/python

[ad_1] Calculate Year on Year, Quarter on Quarter, Month on month number of Repeated, new, lost customers & theri revenue using pandas/python [ad_2] solved Calculate Year on Year, Quarter on Quarter, Month on month number of Repeated, new, lost customers & theri revenue using pandas/python

[Solved] How to loop over an array of variables with the same form of name? [closed]

[ad_1] If you want to do all the columns in your dataframe: for col in df.columns: sns.countplot(df[col]) . Otherwise, following the pattern in your question: for i in range(1,11): column=’id_’+”{0}”.format(i).zfill(2) sns.countplot(df[column]) that will go through the numbers 1-10 and set column to the correct column name. zfill will make sure that for single digit numbers, … Read more

[Solved] Any built-in function in pandas/python which converts a list like data into a list

[ad_1] Yes, there is the split function, however before calling it on your string, you must get rid of the [ and ], or else instead of [‘1’, ‘2’, ‘3’, ‘4’], you will get [‘[1’, ‘2’, ‘3’, ‘4]’], so instead of s.split(), we do s[1:-1].split(), also this means your list is strings instead of ints … Read more

[Solved] Add a new column with the list of values from all rows meeting a criterion

[ad_1] Something like this should work… df = pd.DataFrame({‘date’: [‘2017-01-01 01:01:01’, ‘2017-01-02 01:01:01’, ‘2017-01-03 01:01:01’, ‘2017-01-30 01:01:01’, ‘2017-01-31 01:01:01’], ‘value’: [99,98,97,95,94]}) df[‘date’] = pd.to_datetime(df[‘date’]) def get_list(row): subset = df[(row[‘date’] – df[‘date’] <= pd.to_timedelta(‘5 days’)) & (row[‘date’] – df[‘date’] >= pd.to_timedelta(‘0 days’))] return str(subset[‘value’].tolist()) df[‘list’] = df.apply(get_list, axis=1) Output: date value list 0 2017-01-01 01:01:01 99 … Read more

[Solved] Python – How to Compare a column value of one row with value in next row

[ad_1] Use groupby (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html) Assume your input is saved in a pandas Dataframe (or equivalently save it into csv and read it using pandas.read_csv). Now you can loop over the groups with same S.No values with the following: output = {} for key, group in df.groupby(‘S.No.’): # print key # print group output[key] = {} … Read more