This will give you filtered dataframe with all the columns where Region is Europe
and Purchased Bike
is Yes
agestock = pd.DataFrame({
'Region': {0: 'Europe', 1: 'Europe', 2: 'Europe', 3: 'APAC', 4: 'US'},
'Age': {0: 36, 1: 43, 2: 48, 3: 33, 4: 43},
'Purchased Bike': {0: 'Yes', 1: 'Yes', 2: 'Yes', 3: 'No', 4: 'Yes'}})
In [2]: agestock
Out[2]:
Region Age Purchased Bike
0 Europe 36 Yes
1 Europe 43 Yes
2 Europe 48 Yes
3 APAC 33 No
4 US 43 Yes
In [3]: agestock.query('Region == "Europe" and `Purchased Bike` == "Yes"')
Out[3]:
Region Age Purchased Bike
0 Europe 36 Yes
1 Europe 43 Yes
2 Europe 48 Yes
Alternative approach
In [4]: filter = agestock['Purchased Bike'] == 'Yes'
In [5]: agestock[filter]
Out[5]:
Region Age Purchased Bike
0 Europe 36 Yes
1 Europe 43 Yes
2 Europe 48 Yes
4 US 43 Yes
In [6]: agestock[filter].Region
Out[6]:
0 Europe
1 Europe
2 Europe
4 US
Name: Region, dtype: object
4
solved select variable from column in pandas