The MClust package contains the function densityMclust which produces an object that contains parameter estimates for the fitted Gaussian mixture model along with the density itself. From the MClust manual:
> densWaiting <- densityMclust(faithful$waiting) > summary(densWaiting, parameters = TRUE) ------------------------------------------------------- Density estimation via Gaussian finite mixture modeling ------------------------------------------------------- Mclust E (univariate, equal variance) model with 2 components: log.likelihood n df BIC -1034 272 4 -2090.4 Clustering table: 1 2 99 173 Mixing probabilities: 1 2 0.36102 0.63898 Means: 1 2 54.619 80.094 Variances: 1 2 34.439 34.439 A two-components mixture of Gaussian variables with the same variance is selected by BIC. The parameter estimates can be read from the summary output. A plot of density estimate can be obtained using the corresponding plot method: > plot(densWaiting) The density can also be plotted together with a histogram of the observed data by using the optional argument data: > plot(densWaiting, data = faithful$waiting)
solved R package equivalent to Matlab’s gmdistribution.fit()