Something like this should work…
df = pd.DataFrame({'date': ['2017-01-01 01:01:01', '2017-01-02 01:01:01', '2017-01-03 01:01:01', '2017-01-30 01:01:01', '2017-01-31 01:01:01'],
'value': [99,98,97,95,94]})
df['date'] = pd.to_datetime(df['date'])
def get_list(row):
subset = df[(row['date'] - df['date'] <= pd.to_timedelta('5 days')) & (row['date'] - df['date'] >= pd.to_timedelta('0 days'))]
return str(subset['value'].tolist())
df['list'] = df.apply(get_list, axis=1)
Output:
date value list
0 2017-01-01 01:01:01 99 [99]
1 2017-01-02 01:01:01 98 [99, 98]
2 2017-01-03 01:01:01 97 [99, 98, 97]
3 2017-01-30 01:01:01 95 [95]
4 2017-01-31 01:01:01 94 [95, 94]
2
solved Add a new column with the list of values from all rows meeting a criterion