You may do:
# data
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
the function
foo_divide <- function(x, y){
foo <- function(x) if(is.numeric(x)) x/1000 else x # function to divide numeric columns by 1000
if(missing(y)) y <- 1:ncol(x) # set y if missing
x[, y] <- lapply(x[, y], foo)
as.data.frame(x) # return
}
no listofvars
head(foo_divide(iris))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 0.0051 0.0035 0.0014 2e-04 setosa
2 0.0049 0.0030 0.0014 2e-04 setosa
3 0.0047 0.0032 0.0013 2e-04 setosa
4 0.0046 0.0031 0.0015 2e-04 setosa
5 0.0050 0.0036 0.0014 2e-04 setosa
6 0.0054 0.0039 0.0017 4e-04 setosa
plus listofvars
head(foo_divide(iris, c("Petal.Length", "Petal.Width", "Species")))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 0.0014 2e-04 setosa
2 4.9 3.0 0.0014 2e-04 setosa
3 4.7 3.2 0.0013 2e-04 setosa
4 4.6 3.1 0.0015 2e-04 setosa
5 5.0 3.6 0.0014 2e-04 setosa
6 5.4 3.9 0.0017 4e-04 setosa
You can also use a numeric vector to specify the columns
foo_divide(iris, 1:3)
solved Transforming numerical variables in a dataframe with a function