Ah, so this is a misunderstanding of the operations being performed. Notice the constant p=2
. I have the text All computations are modulo 2.
. Perhaps also stating All inputs are modulo 2
would help hammer the point home. Lets look at some of our computations:
0 + 0 mod 2 = 0
2 + 3 mod 2 = 1
4 + 6 mod 2 = 0
6 + 9 mod 2 = 1
All looks good – addition ring 2 is just exclusive OR. How about multiplication? In ring 2 (binary) that’s just AND:
0 * 0 = 0
2 * 3 = 6 mod 2 = 0
4 * 6 = 24 mod 2 = 0
6 * 9 = 54 mod 2 = 0
So that all checks out as well. Finally, look back at the blog and see that I called this out again and give you a way to operate on something you might consider more pleasing:
In this case, I am building for GF(2) – so my homormorphic addition
is XOR and multiplication is AND. Changing this is as easy as changing
the value of p. Folks wanting to see 2+2=4 should set p to something
that matches their desired domain, such as 257 to obtain 8 bit Ints.
However, HELib has regressed in this aspect – setting p
equal to anything larger than 2
did not work last time I tried it. Shai confirmed this is a known regression.
solved Running a hello world HElib program