Answer 1, with no loops just recursion
package main
import (
"fmt"
"os"
"strconv"
)
func factors(n int, t int, res *[]int) *[]int {
if t != 0 {
if (n/t)*t == n {
temp := append(*res, t)
res = &temp
}
res = factors(n, t-1, res)
}
return res
}
func cf(l1 []int, l2 []int, res *[]int) *[]int {
if len(l1) > 0 && len(l2) > 0 {
v1 := l1[0]
v2 := l2[0]
if v1 == v2 {
temp := append(*res, v1)
res = &temp
l2 = l2[1:]
}
if v2 > v1 {
l2 = l2[1:]
} else {
l1 = l1[1:]
}
res = cf(l1, l2, res)
}
return res
}
func main() {
n, err := strconv.Atoi(os.Args[1])
n2, err := strconv.Atoi(os.Args[2])
if err != nil {
fmt.Println("give a number")
panic(err)
}
factorlist1 := factors(n, n, &[]int{})
factorlist2 := factors(n2, n2, &[]int{})
fmt.Printf("factors of %d %v\n", n, factorlist1)
fmt.Printf("factors of %d %v\n", n2, factorlist2)
common := cf(*factorlist1, *factorlist2, &[]int{})
fmt.Printf("number of common factors = %d\n", len(*common))
}
However, this blows up with larger numbers such as 42512703
replacing the func that do the work with iterative versions can cope with bigger numbers
func factors(n int) []int {
res := []int{}
for t := n; t > 0; t-- {
if (n/t)*t == n {
res = append(res, t)
}
}
return res
}
func cf(l1 []int, l2 []int) []int {
res := []int{}
for len(l1) > 0 && len(l2) > 0 {
v1 := l1[0]
v2 := l2[0]
if v1 == v2 {
res = append(res, v1)
l2 = l2[1:]
}
if v2 > v1 {
l2 = l2[1:]
} else {
l1 = l1[1:]
}
}
return res
}
1
solved Most efficient method of finding the number of common factors of two numbers