You can reformulate your equation as
sin (a x) + b sin (c x) – d * x – e == 0
Now, this is a root finding problem. Here is a list for root finding algorithms.
Newton’s method is very fast and easy to implement, since the derivative of your equation can be calculated analytically.
#include <array>
#include <iostream>
#include <cmath>
template <typename T> double func(const T ¶meter, const double x) {
const auto a = parameter[0];
const auto b = parameter[1];
const auto c = parameter[2];
const auto d = parameter[3];
const auto e = parameter[4];
return sin(a * x) + b * sin(c * x) - (d * x + e);
}
template <typename T> double derivative(const T ¶meter, const double x) {
const auto a = parameter[0];
const auto b = parameter[1];
const auto c = parameter[2];
const auto d = parameter[3];
return a * cos(a * x) + b * c * cos(c * x) - d;
}
template <typename T> double solve(const T ¶meter) {
double x = 0.0;
const double eps = 1e-9;
while (fabs(func(parameter, x)) > eps) {
x = x - func(parameter, x) / derivative(parameter, x);
}
return x;
}
int main() {
const std::array<double, 5> parameter{1.1, 1.2, 0.9, 0.1, 0.1};
const auto x = solve(parameter);
std::cout << "solution is x=" << x << " f(x)=" << func(parameter, x) << '\n';
}
Go from double
to float
to speed it up, if your desired accuracy allows that.
solved Fast way to calculate solution of a triangular equation c++ [closed]