Here are some potential solutions you could use:
import pandas as pd
from yahooquery import Ticker
from datetime import datetime, date
aapl = Ticker('aapl')
df = aapl.history(period='max', interval="1d")
df
volume low high close open adjclose dividends splits
1980-12-12 14:30:00 117258400.0 0.513393 0.515625 0.513393 0.513393 0.405683 0.0 0.0
1980-12-15 14:30:00 43971200.0 0.486607 0.488839 0.486607 0.488839 0.384517 0.0 0.0
1980-12-16 14:30:00 26432000.0 0.450893 0.453125 0.450893 0.453125 0.356296 0.0 0.0
1980-12-17 14:30:00 21610400.0 0.462054 0.464286 0.462054 0.462054 0.365115 0.0 0.0
1980-12-18 14:30:00 18362400.0 0.475446 0.477679 0.475446 0.475446 0.375698 0.0 0.0
Option 1. Get rid of the the timestamp and rename the index:
df.index = df.index.normalize()
df.index.name="Date"
Date volume low high close open adjclose dividends splits
1980-12-12 117258400.0 0.513393 0.515625 0.513393 0.513393 0.405683 0.0 0.0
1980-12-15 43971200.0 0.486607 0.488839 0.486607 0.488839 0.384517 0.0 0.0
1980-12-16 26432000.0 0.450893 0.453125 0.450893 0.453125 0.356296 0.0 0.0
1980-12-17 21610400.0 0.462054 0.464286 0.462054 0.462054 0.365115 0.0 0.0
1980-12-18 18362400.0 0.475446 0.477679 0.475446 0.475446 0.375698 0.0 0.0
Option 2: Just add a date column in front
df.insert(0, 'Date', df.index.normalize())
Date open close high volume \
1980-12-12 14:30:00 1980-12-12 0.513393 0.513393 0.515625 117258400.0
1980-12-15 14:30:00 1980-12-15 0.488839 0.486607 0.488839 43971200.0
1980-12-16 14:30:00 1980-12-16 0.453125 0.450893 0.453125 26432000.0
1980-12-17 14:30:00 1980-12-17 0.462054 0.462054 0.464286 21610400.0
1980-12-18 14:30:00 1980-12-18 0.475446 0.475446 0.477679 18362400.0
Option 3: Add a Date column in front and then reset the index
df.insert(0, 'Date', df.index.normalize())
df.reset_index(inplace=True, drop=True)
Date high volume close open low adjclose \
0 1980-12-12 0.515625 117258400.0 0.513393 0.513393 0.513393 0.405683
1 1980-12-15 0.488839 43971200.0 0.486607 0.488839 0.486607 0.384517
2 1980-12-16 0.453125 26432000.0 0.450893 0.453125 0.450893 0.356296
3 1980-12-17 0.464286 21610400.0 0.462054 0.462054 0.462054 0.365115
4 1980-12-18 0.477679 18362400.0 0.475446 0.475446 0.475446 0.375698
It’s hard to be sure what you’re after, but maybe a quick tutorial in pandas wouldn’t hurt
https://www.tutorialspoint.com/python_pandas/index.htm since you seem to be thinking that Excel knowledge is directly translated into python pandas without a learning curve.
solved Parsing date from fetched dataframe – Python